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Summary 

The distances of stacked bases of DNA in different conformations can- 
not be calculated by equilibrium potentials, since they exhibit not more 

than only one minimum. However, a double potential minimum is obtained by 

considering the most simple semiclassical model of excitons that are coupled 

adiabatically to lattice vibrations, hence forming polaritons. By use of 
Danilov's extended Hfickel approximation of DNA excitons, stacked base dis- 
tances can be calculated that agree fairly well with the experimental data. 

The errors of this approach are small as compared to the differences of the 

distances in various conformations. Consequently, this model may work as a 
first base of understanding molecular interactions in DNA. 

Introduction 

It is well known that the stationary state distances of stacked bases 

of DNA display potential minima of the corresponding interaction energy. 
The large difference of the experimental values of the vertical base pair 

distances in different DNA conformations, for instance 2.6 A of the A-form 
and 3.4 ~ in the B-form (i-4), cannot be explained in terms of the usual 

dipole-dipole, dipole-induced dipole and dispersion interactions energies 
of purine and pyrimidine ground states. This follows from extented calcula- 
tions of DNA-interactions energies (for instance (5)), which can never re- 
sult in a double potential minimum of vertical interactions between stacked 

bases. Consequently, non-equilibrium phenomena have to be considered, in 
order to understand the stationary state distances of stacked bases of DNA 

in different conformations. This consequence, which is in line with Prigo- 
gine's theory of dissipative structures, is not entirely new (6,7) and holds 
even in quasi-equilibrium situations, if the life time of excited states is 
considerably long. 

Phase transitions of solitons, that have been claimed for understanding 
the dynamics of DNA conformations (8) and hence also its geometry are, of 

course, a possible source of influence on the distances of stacked bases in 
different conformations, too. There arise, however, at the one hand, diffi- 
culties in understanding the rather stationary state distances of DNA with 
this model. External influences (cations, water, hydration), on the other 

hand, cannot explain the large difference in base distances (about 2.6 A 
and 3.4 ~, respectively) between the A and B form of DNA. 

We suggested, for several reasons that exciplex formation is a funda- 
mental non-equilibrium process in DNA (9). This exciplex model does not ex- 
clude several potential minima, because the molecular couplings are assumed 
to be very strongly localized. Moreover, it allows distinct interaction po- 
tentials which are rather stable against external influences. It appears, 
therefore, reasonable, to calculate the potential minima of the known ex- 
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ciplex potential of DNA base pairs (I0) and to compare them with the exper- 

imental data. 

Results and Discussion 
According to a semiclassical adiabatic approach, spatial and temporal 

parts of the DNA interactions can be factorized. This most simple model de- 

livers the potential for a stationary state, and allows to decide whether 
more detailed calculations may be useful or not. 

Denoting the interaction potentials of the exciplex state and its 

ground state, V1(x) and V2(x), respectively, where x represents the verti- 
cal distance of stacked base pairs, the average potential V(x,t) is given 

by 
NI (t) N 2 (t) 

V(x,t) = - "  Vl (x) + " V2(X) (I) 
N N 

NI (t) and N2(t) are the numbers of electrons occupying the levels Vl (x) and 

V2(x) at time t, respectively. N is the average number of electrons within 

the exciplex system. As long as N remains constant, the system can remain 
in the stationary state. The sufficient condition of stationarity is then 
obtained from the rate equations of an exciplex system (11): 

The factor ~ reflects the fact that one excited state is obtained for each 

two bases in the ground state. This fact may be important for the doubling 

capacity of this macromolecule. 
The potential equ. (i) gives rise to vertical oscillations of the base 

pairs around two stationary state positions Xl and X2. Actually, we obtain 
by optimization dV = 0, and keeping N constant 

(NIVl + N2V2) dt + (NIV; + N2V2) dx = 0 

resulting in 

d-~ = NIV~ + NzV~ (3) 

A stable distance is only achieved for <x> = 0, where <...> denotes 
the time average over one period of oscillation. This means that solutions 

of equ. (3) have to be found, where either the nominator vanishes or, in 

case of a vanishing denominator, the nominator vanishes in such a way that 
equ. (3) provides a vanishing <~> too. 

The first possible solution of ~> = 0 is obtained, when we substitute 

equ. (2) into equ. (3) for ~ = 0. Then holds 

V1(Xl) = 2V2(Xl) (4a) 

For the second possible solution, x has obviously to change its sign for a 

given set of N I and N 2. By use of the well-known rule of l'Hospital it can 

be easiiy shown that in this case equ. (3) vanishes, if and only if 

<NI> = <N2 > = 0 with N1 = N2 

and 
I ! 

VI (X 2) = - V2(X 2) (4b) 

For our purpose it suffices to use approximations of the potentials Vl(X) 
and V2(x) for AA-, GG-, UU-, and CC-excimers. TT-excimers would shift Xl 
and X2 to slightly higher values. Taking into account the calculated poten- 
tials of Danilov et al. (i0) which, on the basis of M0-theory, deliver the 
so far most accurate results, we can then scribe approximately 
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Vl (x) : 4.5 exp (-](x-xo)) + 8.25 in (~) (5a) 
Xo 

V2(x) = 4.5 exp (-~(x-xo)) (5b) 

V is taken in units of eV, x in A. For x o = 2.4 A, Vl and V2 become equal. 
The formulae (3) are with sufficiently high accuracy valid in the re- 

gion 2.4 ~ < x < 3.8 A. The coefficients have been adjusted to the minimum 

of Vl, and the boundary values of Vl and V2 according to ref~ (i0). 

By use of (4a) we get 

Xl = 2.6 • 0.i A (6a) 

Differentiation of equ. (5) and insertion into equ. (4) result finally in 

X2 = 3.3 • 0.2 A (6b) 

The uncertainties in the approximation of Danilov's calculations have there 

been considered. 

Xl agrees well with the known vertical distance of base pairs in the A-form 
(2.6 A), while X2 reflects the experimental data of the other DNA conforma- 
tions (3.0 to 3.8 A), if considering the sensitive dependence of X2 on the 
denominator of the term on the RHS of equ. (3). In particular, a rather 

strong influence of this distance on external forces can be expected. The 

error of these calculated stationary state distances is, however, small 
compared to the actual differences of 0.6 ~ of these distances themselves 

such that the model is strongly supported by the actual quantitative re- 

sults. 
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